Turbulence Control — Better, Faster and Easier with Machine Learning

Bernd R. Noack Harbin Institute of Technology Technical University of Berlin

— supported by NSFC, Guangdong Prov., Shenzhen Govt., NSFC, DFG, ANR —

XXV Fluid Mechanics Conference, Rzeszów, 2022-09-07..09

Contributors

Nan DENG

MACEDA

Songqi LI

Anne LI

Co-supervisors

Luc PASTUR ENSTA

Francois LUSSEYRAN LIMSI

Nan GAO HangHua

Marek MORZYNSKI UT Poznan

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

- **2. Machine learning control** *Complex MIMO laws in ~1h wind-tunnel test*
- **3. Cluster-based control** Simple feedback laws in few dozen simulations

5. Summary and outlook of turbulence control

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

- **2. Machine learning control** *Complex MIMO laws in ~1h wind-tunnel test*
- **3. Cluster-based control** Simple feedback laws in few dozen simulations
- **5. Summary and outlook of turbulence control** Paradigm change by machine learning

Turbulence control \mapsto **car drag reduction**

Control strategies

- aerodynamic design
- passive (e.g. spoilers)
- active, open-loop
 - (e.g. periodic blowing)
- active, closed-loop

(largest opportunities!)

Renault Altica 2006 \mapsto

Renault Altica – Article in R & D 06/2004

AÉRODYNAMIQUE ACTIVE

Active flow control with synthetic jets:

- 20% drag reduction at 90km/h;
- 11 fuel saving per 100 km;
- only 10 Watt actuation energy.

Turbulence control \mapsto **myriad applications**

Simple prototype flows

Production etc.

Paradigms for turbulence control laws Machine learning makes turbulence control student-proof

Feedback law: b = K(s), b: actuation, s: sensing

Classical paradigm

Machine learning

for 1+2 frequencies	\sim 1h wind-tunnel test
Simple control laws	Complex control laws
Lots of human modeling	(1)-(3) Fully automated
in plant	in plant
(4) Test+tune control	(1) Control optimization
(3) Control design	(2) Control law
\downarrow	$\uparrow \qquad \qquad$
↓(2) Modeling	(3) Modeling
(1) Understand	(4) Understand

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

- **2. Machine learning control** Complex MIMO laws in ~1h wind-tunnel test
- **3. Cluster-based control** Simple feedback laws in few dozen simulations

5. Summary and outlook of turbulence control Paradigm change by machine learning

Drag reduction of simplied car model

 \equiv Barros, et al. 2016 JFM & \equiv Östh et al. 2014 JFM

Model-based control | Machine learning control

Build model: $\frac{da}{dt} = F(a,b)$ s = G(a,b)Derive control: b = K(s)

Define cost function: $J = J_a + J_b = min$

Solve regression problem: $K_{opt}(s) = \arg \min J [K(s)]$

Machine learning control

 \equiv

Duriez, Brunton & Noack 2016 Springer, \equiv Wahde 2008

Regression problem: Find b = K(s) so that J = min

Regression method = Genetic programming

 \equiv

 \equiv

 \equiv

 \equiv

 \equiv

 \equiv

 \equiv

Drag reduction of simplied car model

 \equiv Barros, et al. 2016 JFM & \equiv Östh et al. 2014 JFM

MLC-based drag reduction

 \equiv Li+ 2017 EF & \equiv Barros+ 2016 JFM

 b_1 **0** 10 0 **Experiment:** $Re = 3 \times 10^5$ **MLC** application 0 13 0 6 14 b_2 MIMO control problem: Testing time < 1 hour 12 Ansatz b = K(s)MLC law: **Drag reduction:** $22\% \mid b_1 = b_2 = b_3 = b_4 = b_4$ **Energy investment:** 3% b = H tanh tanh $(s'_4 - 0.1)$

Proximity plot for MLC of car model = 2017 Kaiser+ FSSIC = 2016 Kaiser+ TCFD

MLC with 5 generations with 50 control laws each.

AI / Machine Learning Control Experiments

 \equiv Brunton & Noack 2015 AMR; Duriez+ 2016 Springer; Noack 2019 FSSIC

Smart skin concept ≡ S.L. Brunton & B.R. Noack 2015 AMR

Targeted actuation near sensed point of separation with **AI**-based control.

Smart skin concept ≡ S.L. Brunton & B.R. Noack 2015 AMR

Smart skin separation control experiment

- Work in progress -

 $U_{\infty} = 5 \text{ m/s}; H = 5 \text{ cm}; \delta_{99} = 1 \text{ cm}; Re_H = 33,000;$ $U_{\text{jet}} = 15-20 \text{ m/s}; \text{ actuator/sensor element } 2 \text{ cm} \times 5 \text{ cm}.$

Smart skin + gMLC: Learning curve

- Work in progress -

OPTIMIZED ACTUATION

• Equivalent duty cycles of the best control law

Smart skin + gMLC: Flows

- Work in progress -

CONTROLLED FLOW

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

2. Machine learning control *Complex MIMO laws in ~1h wind-tunnel test*

3. Cluster-based control

..... Simple feedback laws in few dozen simulations

5. Summary and outlook of turbulence control

 \equiv A.G. Nair, C.-A. Yeh, E. Kaiser, B.R. Noack, S.L. Brunton & K. Taira 2019 JFM

LES, NACA0012: Single-input: Multiple-input: Control law: Cost function: $Re = U_{\infty}L/\nu = 23,000, \ \alpha = 9^{\circ}$ b, Amplitude of spanwise periodic jets $s = [C_D(t), C_L(t), dC_L/dt(t)]^{\dagger}$

$$b = K(s)$$

J = flight endurance \sim drag (propulsion energy per unit mass and unit let

 \equiv A.G. Nair, C.-A. Yeh, E. Kaiser, B.R. Noack, S.L. Brunton & K. Taira 2019 JFM

 \equiv A.G. Nair, C.-A. Yeh, E. Kaiser, B.R. Noack, S.L. Brunton & K. Taira 2019 JFM

A.G. Nair, C.-A. Yeh, E. Kaiser, B.R. Noack, S.L. Brunton & K. Taira 2019 JFM

Cost function $J = J_{drag} + J_{act}$ where $J_{drag} = c_D^a (c_L/c_L^a)^{3/2}$ (flight endurance); J_{act} =act. power **Simplex optimization** of cluster-based control law: Lift preserved, drag reduced by 41 %

■ A.G. Nair, C.-A. Yeh, E. Kaiser, B.R. Noack, S.L. Brunton & K. Taira 2019 JFM

Cluster-based network model

 \equiv Fernex et al 2021 Sci Adv, \equiv H. Li et al. 2020 JFM

Cluster-based network model

 \equiv Fernex et al 2021 Sci. Adv.

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

- **2. Machine learning control** *Complex MIMO laws in ~1h wind-tunnel test*
- **3. Cluster-based control** Simple feedback laws in few dozen simulations

5. Summary and outlook of turbulence control

Toolbox for turbulence control

S. Brunton, B.R. Noack & P. Koumoutsakos 2020 ARFM

(1) Response model $b \mapsto J$ (2) Parametric optimizer $b^* = \arg \min J(b)$ EGM, BO, PSO, \triangleright 11:45 talk of Anne LI(3) Feedback learner $K^*(s) = \arg \min J(K(s))$

▷ 11:15 talk of Guy CORNEJO MACEDA

(4) Automatable reduced order model

$$\frac{da}{dt} = f(a, b), u(x) = h(a, b, x)$$

(5) Handcrafted model \triangleright 11:00 talk of Nan DENG $\frac{da}{dt} = f(a,b), u(x,t) = \sum a_i(t)u_i(x)$

(6) Full-state estimator > 11:30 talk of Songqi LI

u(x) = g(s, b, x)

Fluidic pinball—A modeling benchmark

📃 N. Deng, B. R. Noack, M. Morzyński & L. Pastur 2020 & 2021 JFM

Fluidic pinball—Successive bifurcations

 \equiv Deng et al. 2020 JFM, \equiv Deng et al. 2021 JFM, \equiv Deng et al. 2021 EPL

Fluidic pinball—Phase portraits

📃 Deng, Noack, Morzyński & Pastur 2020 JFM

POD Galerkin method — Summary

— Holmes, Lumley, Berkooz & Rowley 2012 Cambridge —

Galerkin method

Galerkin approximation
(Proper orthogonal decomposition, principal axes)second (most energetic)
POD modefirst (most energetic)
POD mode

Galerkin projection

$$(\mathbf{u}, \mathbf{v})_{\Omega} := \int dV \mathbf{u} \cdot \mathbf{v}$$

$$(\mathbf{u}_{i}, \partial_{t} \mathbf{u})_{\Omega} = \int dV \mathbf{u}_{i} \cdot \partial_{t} \left(\sum_{j=0}^{N} a_{j} \mathbf{u}_{j} \right)$$

$$= \sum_{j=1}^{N} \frac{da_{i}}{dt} \int dV \mathbf{u}_{i} \cdot \mathbf{u}_{j}$$

$$= \frac{d}{dt} a_{i}$$

Fluidic pinball—Galerkin model for Re = 80

Deng, Noack, Morzyński & Pastur 2020 JFM

Figure : Comparison of DNS with R.O.M.

Fluidic pinball—Galerkin model for Re = 80

Deng, Noack, Morzyński & Pastur 2020 JFM

Fluidic pinball—Galerkin model bifurcations

 \equiv Deng, Noack, Morzyński & Pastur 2020 JFM

Fluidic pinball—A control benchmark

 \equiv G.Y. Cornejo Maceda, Y. Li, F. Lusseyran, M. Morzynski & B.R. Noack 2021 JFM

Reynolds number
$$\text{Re} = \frac{U_{\infty}D}{\nu} = 100$$

Fluidic pinball community:

- Model predictive control by Steve Brunton (University of Washington)
- Deep reinforcement learning control by Jean Rabault (University of Oslo) and Thibaut Guégan & Laurent Cordier (Pprime Institute) and
- Experiments in the University of Calgary lead by Robert Martinuzzi and LISN/CNRS lead by François Lusseyran
- Myriad of regimes (Chen et al., 2020 JFM)

Magnus effect

Low frequency forcing

High frequency forcing

Base bleeding

Phasor control

Stablization of the fluidic pinball at Re = 100

 \equiv G. Cornejo-Maceda, Y. Li, F. Lusseyran, M. Morzyński & B. R. Noack 2021 JFM

Plant: 3 rotating cylinders b + 9 sensors sControl law: b = K(a), $a(t) = [s(t), s(t - \tau), \dots, s(t - 3\tau)]$ Cost function: $J_a = \sqrt{||u(x,t) - u_s(x)||^2}$

Actuation penalty: J_b = power to rotate the cylinders

Stabilizing the fluidic pinball

≡ G. Cornejo Maceda, Y. Li, F. Lusseyran, M. Morzyński & B.R. Noack 2021 JFM

Optimal stabilization = asymm. boat tailing actuation + phasor control Learning time: \sim 500 simulations. \triangleright Talk of Guy CORNEJO MACEDA

Overview

1. An eldorado of engineering applications The need for closed-loop turbulence control

- **2. Machine learning control** *Complex MIMO laws in ~1h wind-tunnel test*
- **3. Cluster-based control** Simple feedback laws in few dozen simulations

5. Summary and outlook of turbulence control Paradigm change by machine learning

Conclusions

 \equiv Brunton+ 2015 AMR; Duriez+ 2016 Springer; Brunton+ 2020 ARFM

Machine learning control \mapsto Car+ Complex MIMO feedback ~ 1 hour wind-tunnel time **Cluster-based control** → **Airfoil**+ Simple full-state feedback \sim few dozen simulations Smart skin drag reduction \mapsto customizable control Distributed actuation + sensing \mapsto Next big opportunity **Fluidic pinball** = modeling + control benchmark Rich unforced dynamics, many actuation mechanisms \triangleright Talks of Anne, Guy, Nan and Songqi 11:00–12:00

Books and reviews

Machine Learning for Fluid Mechanics

Annual Review of Fluid Mechanics Vol. 52:477-508 (Volume publication date January 2020) First published as a Review in Advance on September 12, 2019 https://doi.org/10.1146/annurve/filid-101710-060214

Steven L. Brunton,¹ Bernd R. Noack,^{2,3} and Petros Koumoutsakos⁴

¹Department of Mechanical Engineering, University of Washington, Seattle, Washington 98155, USA ²LIMSI (Laboratorie d'Informatique pour la Mécanique et les Sciences de l'Ingénieur), CNRS UPR 2251, Université Paris-Saclay, F-91403 Orsay, France ³Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, D-10634 Berlin, Germany ⁴Computational Science and Engineering Laboratory, FTH Zurich, CH-8092 Zurich, Switzerland; email: petrosgethz.ch

2020 ARFM

Applied Mechanics Reviews

2015 AMR

Stay tuned!

Recruiting professors and postdocs

WE RECRUIT *professors and postdocs* related to the following research areas:

- Aerodynamic optimization and flow control.
- Gust mitigation and flight control.
- Computational fluid dynamics and aeroacoustics.
- Experimental fluid dynamics and aeroacoustics.
- *Machine learning and artificial intelligence.*

For application, please send your cover letter and CV to Professor Bernd R. Noack at bernd.noack@hit.edu.cn